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Agenda

▪ Coarse/Fine grain memory

▪ Floating-Point (FP) hardware atomics in HIP (safe vs. unsafe)

▪ Preliminary performance study of coarse vs. fine grain memory

▪ HMM, XNACK, page migration in HIP

▪ ROCm™ OpenMP® memory granularity and HW atomics

▪ Conclusions and future work
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Memory Model

• Memory Model – a memory model defines the rules for the synchronization of 

memory modifications between threads, compute hardware and cache. A 

memory model is critical for parallel computing to help both system developers 

and application programmers avoid data hazard or race conditions where 

memory is modified by one entity, but another compute unit fails to get the 

updated value.

May 4th, 2023 CASTIEL
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HMM: Heterogenous Memory Management

▪ Feature of the Linux kernel

▪ It provides infrastructure and helpers to integrate non-conventional memory (GPU memory) into 

regular Linux® kernel

▪ Any valid pointer on the CPU is also a valid pointer for the GPU and vice versa

▪ Enables page migration between CPU and GPU

▪ HMM never frees CPU memory when migration happens

▪ In this case, the migratable CPU memory is still swappable
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XNACK

XNACK

Refers to the AMD GPU's ability to retry memory accesses that fail due to a page fault.

On MI250X, this can be enabled on a per-process based using the environment variable 
HSA_XNACK=1 and disabled using HSA_XNACK=0. Default decided at boot time.

xnack compiler flag

Compilation mode that can assume three possible values: xnack+, xnack-, xnack any.

To change the xnack compilation mode of a program, xnack+ or xnack- may be appended to the 
architecture flags:

▪ --amdgpu-target=gfx90a:xnack+ [ROCm™ < 4.5] or

▪ --offload-arch=gfx90a:xnack+ [ROCm™ >= 4.5]

Supplying multiple xnack options will yield a "fat-binary" with both modes enabled.

When not specified, the default “xnack any” mode will be used.

Code compiled with “xnack any” will run in any case.
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Page Migration

Two possible ways to have page migration:

1. Explicitly move pages from/to CPU/GPU via HIP API (e.g., hipMemPrefetchAsync())

2. Automatic page moves from CPU/GPU on a page fault

HMM is always needed for page migration

HMM, HSA_XNACK=1, xnack+(or any) needed for page migration on GPU page fault

Currently, there is no way to detect whether page migration occurred

Only two of the four allocators allow page migration:

▪ malloc(), system allocators

▪ hipMallocManaged()

Different allocators show different performance and behavior
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Malloc() – system allocator

a = (float *) malloc (n*sizeof(float));

Init_on_cpu(a,b,c,n);

Vadd_kernel<<<blocks,threads>>> (array, n); // N=256M

First time: 0.39 seconds  - Following times: 0.005071 seconds

When HSA_XNACK=0, no migration will ever happen. It is regular host memory.

When HSA_XNACK=1, migration can happen, but performance may vary based on alignment requirements.

malloc() can place this memory anywhere on the host, the runtime has no control over alignment.

Not having the right alignment may prevent page migration (working on improving this).

a = new (std::align_val_t(4096)) float[n];

Init_on_cpu(a,b,c,n);

vadd_kernel<<<blocks,threads>>> (array, n); // N=256M

First time: 1.824573 seconds - Following times: 0.002457 seconds
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hipMallocManaged()

hipMallocManaged() is the most reliable allocator to obtain page migration.

hipMallocManaged(&a,n*sizeof(float)); //same for b and c

Init_on_cpu(a,b,c,n);

Vadd_kernel<<<blocks,threads>>> (a,b,c,n); // N=256M

First time: 0.51 seconds  - Following times: 0.0023 seconds // same as hipMalloc
memory

Host_vadd(a,b,c,n); // N=256M

First time: 0.94 seconds  - Following times: 0.12 seconds // same as regular CPU 
memory
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hipMemPrefetchAsync and hipMemAdvise

hipMemPrefetchAsync() is currently not asynchronous, plans to make it asynchronous.

Works in both directions, CPU < --- > GPU.

HMM is needed to have hipMemPrefetchAsync() working correctly. No action when HMM not available.

hipMemAdvise() current status:
1) hipMemAdviseSetPreferredLocation/Mostly Read (have known limitations)
2) hipMemAdviseSetAccessedBy working

How to use hipMemAdvise():

hipDevice_t device = -1;

hipGetDevice(&device);

float *a = (float *) malloc(n * sizeof(float));

hipMemAdvise(a, n * sizeof(float), hipMemAdviseSetCoarseGrain, device);

Notes

▪ hipMemAdvise() currently operates at a page granularity.

▪ More details/docs on hipMemAdvise() are needed.
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Table for HSA_XNACK=0

malloc() hipMallocManaged() hipMalloc() hipHostMalloc()

CPU Access In place, local In place, local * In place, remote In place, local

GPU Access Seg fault In place, remote * In place, local In place, remote

Automatic Migration

To GPU

No No No No

Support for 

hipMemPrefetchAsync

No Yes No No

Support hipMemAdvise Yes Yes No No

Default granularity N/A Fine Coarse Fine

* Current behavior may be different from future behavior
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Table for HSA_XNACK=1

malloc() hipMallocManaged() hipMalloc() hipHostMalloc()

CPU Access May migrate Migrates In place, remote In place, local

GPU Access May migrate Migrates In place, local In place, remote

Automatic Migration

To GPU

Yes Yes No No

Support for 

hipMemPrefetchAsync

Yes Yes No No

Support 

hipMemAdvise

Yes Yes No No

Default granularity Fine Fine Coarse Fine
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Managed Memory Example – Original Code

May 4th, 2023 CASTIEL

• git clone https://github.com/ROCm-

Developer-Tools/HIP-Examples.git

• cd HIP-Examples/vectorAdd

• Load ROCm™ – module load rocm

• make – will compile and run

• Should run and report PASSED!

https://github.com/ROCm-Developer-Tools/HIP-Examples.git
https://github.com/ROCm-Developer-Tools/HIP-Examples.git
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Managed Memory Example

May 4th, 2023 CASTIEL

• Now let's modify the memory allocation for 

managed memory

• Globally change all “host” strings to “vector”

• Globally change all “device” strings to “vector”

• Remove duplicate float declarations

• Move both allocations above initialization loop

• Comment out all hip data copies from host to device 

and device to host

• Add hipDeviceSynchronize(); after the kernel launch

• First experiment: comment out the 

hipMalloc/hipFrees

• Test should fail with an

• Memory access fault

• Set export HSA_XNACK=1

• Rerun and test should pass
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Managed Memory Example

May 4th, 2023 CASTIEL

• Second experiment: comment out the 

malloc/frees instead and unset the HSA_XNACK 

variable or set it to 0

• Test should pass
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Managed Memory Example

May 4th, 2023 CASTIEL

• Third experiment: Change hipMalloc to 

hipMallocManaged

• Test should pass
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Recommendations

• Unified or Managed Memory can be very helpful in the initial porting of an application

• Explicit memory management may be preferable for:

• Portability to systems without unified memory support

• Performance might be slightly better

• For page migration, hipMallocManaged() provides the best performance.

• malloc() provides support for page migration, but alignment may impact the performance and ability 

to migrate pages.

• hipHostMalloc() and hipMalloc() memory can be accessed by CPU and GPU, respectively, but pages 

will not migrate.

• More data is needed on performance implications on xnack +/- in real applications

May 4th, 2023 CASTIEL
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Coarse/Fine Grain Memory Allocations

▪ Coarse grain: coherence and memory ordering with the whole system are legal at 
synchronization points (e.g. kernel boundaries). For optimization purposes it avoids coherence 
until needed.

▪ Fine grain: coherence and memory ordering with the whole system possible within GPU 
kernels. Allows CPU and GPU (and multiple GPUs) to synchronize while the GPU kernel is 
running. Reduced cacheability.

In HIP there are currently four main allocators:

▪ hipHostMalloc() returns fine grain memory by default

▪ hipMalloc() always returns coarse grain memory

▪ hipMallocManaged() returns fine grain memory by default

▪ malloc(), “new” returns fine grain memory by default

hipMallocManaged() and malloc()/new will be discussed later in more details
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Coarse/Fine Grain Memory Allocations

▪ HipMemAdvise also has options for coarse/fine grain

▪ hipMemAdvise() current status:

1) coarse/fine grain setting is working

hipMallocManaged() and malloc()/new will be discussed later in more details
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Coarse/Fine Grain for hipHostMalloc

hipHostMalloc flags Granularity Meaning

hipHostMallocDefault Fine grain Memory is mapped and portable

hipHostMallocPortable Fine grain Registered by all contexts

hipHostMallocMapped Fine grain Map allocation into device

hipHostMallocWriteCombin

ed

Fine grain More efficient writes?

hipHostMallocNumaUser Fine grain Follow NUMA policy set by user

hipHostMallocCoherent Fine grain Set memory to be coherent

hipHostMallocNonCoherent Coarse grain Set memory to be non coherent

Example:

hipHostMalloc((void**)&ptr, (size_t)bytes, hipHostMallocDefault);
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Coarse/Fine Grain for hipMallocManaged() and  malloc()/new

API Flag/memAdvise Result

hipMallocManaged() Default Fine grain

hipMallocManaged() Default + hipMemAdvise -

hipMemAdviseSetCoarseGrain

Coarse grain

Malloc()/new Fine grain

Malloc()/new hipMemAdvise-

hipMemAdviseSetCoarseGrain

Coarse grain

Example:

float *a;

hipMallocManaged(&a, n * sizeof(float));

hipMemAdvise(a, n * sizeof(float), hipMemAdviseSetCoarseGrain, device);
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Conclusions

• More data is needed on performance implications of fine vs. coarse grain memory in real applications

• Future work will show more examples of advanced synchronization patterns with fine grain memory

May 4th, 2023 CASTIEL
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Atomics on Coarse/Fine Grain Regions

MI250X provides a set of HW atomics for INT and FP (e.g. atomicAdd()).

HW-accelerated FP atomics applied to fine grain memory regions will silently fail.

By default, the compiler replaces all language level FP atomics with CAS loops regardless of the 
granularity of the memory region.

FP Atomics based on a CAS loop are slower than HW FP Atomics.

The flag -munsafe-fp-atomics currently suggests to the compiler to generate HW FP atomic 
instructions.

HIP exposes the unsafeAtomicAdd() function to always emit HW FP Atomics.

From ROCm-5.2.0 the use of the -munsafe-fp-atomics flag will enforce HW FP atomics.

The word “unsafe” refers to the fact that HW FP atomics performed on fine grain memory will fail. 

Using “unsafe” atomics is perfectly safe when used on coarse grain memory.

Integer atomics will always be based on HW Atomics.

OpenMP® equivalent covered later
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Summary Atomics on Coarse/Fine Grain Regions

Compiler flag atomicAdd unsafeAtomicAdd

-mno-unsafe-fp-atomics / default CAS loop HW FP Atomics

-munsafe-fp-atomics CAS loop / HW FP Atomics HW FP Atomics

-munsafe-fp-atomics (ROCm >= 5.2) HW FP Atomics HW FP Atomics

Compiler flag Fine grained Coarse grained

-munsafe-fp-atomics Incorrect results Correct results, fast

-mno-unsafe-fp-atomics / default Correct results, slow Correct results, slow
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Performance Impact in an Application

Notes:

• MI250x

• Managed memory turned off

• Single precision

WRONG Answer

(expected for fine-grain 

allocation and hardware atomic)

Coarse-grain Fine-grain

Hardware atomics 1 .93

CAS loop 39 1678

❑ Extreme Test case for a single kernel with multiple atomicadds

❑ CAS is a compare and swap operation with multiple lines of code

❑ Performance for each is shown relative to the coarse-grain 

memory with hardware atomics

❑ Fine-grain memory is faster, but it gives an incorrect answer 

(expected)
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Conclusions

• From ROCm-5.2.0 onwards the use of the -munsafe-fp-atomics flag will enforce HW FP atomics.

• -munsafe-fp-atomics is safe on memory allocated using hipMalloc(). Check various tables for all 

other cases.

• HIP exposes the unsafeAtomicAdd() function to always emit HW FP Atomics.

• Fast atomic operations for datatypes other than FP do not require the -munsafe-fp-atomics flag.

May 4th, 2023 CASTIEL
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For this exploration of OpenMP® memory behavior

For this example, we use the AMD OpenMP compiler (AOMP)

• Module load aomp rocm

• CC=${AOMP}/bin/clang or /opt/rocm<-vers>/llvm/bin/clang

• --offload-arch=$(ROCM_GPU) or --offload-arch=gfx90a

The xnack setting can also be set in your environment

• export HSA_XNACK=1

• === To check what is happening under the covers

• export LIBOMPTARGET_KERNEL_TRACE=1

• export LIBOMPTARGET_INFO=$((0x20 | 0x02 | 0x01 | 0x10))
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Default and Unified Shared Memory Modes

int main(int argc, char *argv[]) {

int errors=0, n=10000;

double *a = (double*)malloc(n*sizeof(double));

double *b = (double*)malloc(n*sizeof(double));

for (int i = 0; i < n; i++){

a[I] = 0.0;

b[I] = 1.0;

}

#pragma omp target teams distribute parallel for map(tofrom: a[:n]) map(to: b[:n])

for(int i = 0; i < n; i++){

a[i] += b[i];

}

}

• Device (global) memory allocation

• Host-to-Device and Device-to-Host memory copy

• Default for memory allocated by "map" is coarse grain

Default Mode
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Default and Unified Shared Memory Modes

• Maps are not required

• OpenMP® runtime does not issue memory allocation and memory copy requests

• OS allocator returns fine grain memory pointer

#pragma omp requires unified_shared_memory

int main(int argc, char *argv[]) {

int errors=0, n=10000;

double *a = (double*)malloc(n*sizeof(double));

double *b = (double*)malloc(n*sizeof(double));

for (int i = 0; i < n; i++){

a[I] = 0.0;

b[I] = 1.0;

}

#pragma omp target teams distribute parallel for map(tofrom: a[:n]) map(to: b[:n])

for(int i = 0; i < n; i++){

a[i] += b[i];

}

}

Unified Shared Memory Mode
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Default and Unified Shared Memory Modes

• If maps are used, pages used by a and b switch to coarse grain

• OpenMP® runtime still does not issue device memory allocation, nor memory copies

Unified Shared Memory Mode
#pragma omp requires unified_shared_memory

int main(int argc, char *argv[]) {

int errors=0, n=10000;

double *a = (double*)malloc(n*sizeof(double));

double *b = (double*)malloc(n*sizeof(double));

for (int i = 0; i < n; i++){

a[I] = 0.0;

b[I] = 1.0;

}

#pragma omp target teams distribute parallel for map(tofrom: a[:n]) map(to: b[:n])

for(int i = 0; i < n; i++){

a[i] += b[i];

}

}
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#pragma omp requires unified_shared_memory

int main(int argc, char *argv[]) {

int errors=0, n=10000;

double *a = (double*)malloc(n*sizeof(double));

double *b = (double*)malloc(n*sizeof(double));

for (int i = 0; i < n; i++){

a[I] = 0.0;

b[I] = 1.0;

}

#pragma omp target teams distribute parallel for map(tofrom: a[:n]) map(to: b[:n])

for(int i = 0; i < n; i++) a[i] += b[i];

#pragma omp target teams distribute parallel for

for(int i = 0; i < n; i++)

a[i] += 1.0;

}

Features and Limitations

• a and b remain coarse grain for the remainder of their life

• No need to map them again to make them coarse grain

Coarse grain scope
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#pragma omp requires unified_shared_memory

int main(int argc, char *argv[]) {

int errors=0, n=10000;

double *a = (double*)malloc(n*sizeof(double));

double *b = (double*)malloc(n*sizeof(double));

init(a,b);

#pragma omp target teams distribute parallel for

for(int i = 0; i < n; i++)

a[i] += b[i];

}

Features and Limitations

• a and b are not mapped here

• They are coarse grain due to previous map

Coarse Grain is Sticky void init(double *a, double *b) {

#pragma omp target map(from:a[:n],b[:n])

for(int i = 0; i < n; i++){

a[i] = b[i] = 1.0;

}

}

a and b change to coarse 

grain
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Details

“map” clause default mode device allocation + host/device transfer

“map” clause in unified_shared_memory mode

memory pages

switch to coarse grain permanently upon 

map

omp_target_alloc (both modes) device allocation (coarse grain)

Allocator with pinned trait set memory lock

OpenMP® Allocation 

Mechanism
Behavior
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Fast Floating Point Atomics

#include <omp.h>

#pragma omp target teams distribute parallel for reduction(+:ret)

for(int i = 0; i < n; i++) {

#pragma omp atomic hint(AMD_fast_fp_atomics)

ret += b[i];

}

Test case will fail because a and 

ret are fine grain memory

Force compiler to use fast FP atomics

There are two ways this can be fixed. They 

are shown on the following two slides.
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Fast Floating Point Atomics

#include <omp.h>

#pragma omp target teams distribute parallel for map(to: b[:n]) map(tofrom: ret)

for(int i = 0; i < n; i++) {

#pragma omp atomic hint(AMD_fast_fp_atomics)

ret += b[i];

} a and ret switched to coarse grain

fails with reduction clause

Force compiler to use fast FP atomics
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Fast Floating Point Atomics

#include <omp.h>

#pragma omp target teams distribute parallel for reduction(+:ret)

for(int i = 0; i < n; i++) {

#pragma omp atomic hint(AMD_safe_fp_atomics)

ret += a[i];

}

Force compiler to use safe FP atomics (Compare-And-Swap)
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Fast Floating Point Atomics

none AMD_fast_fp_atomics
AMD_safe_fp_atomic

s

none CAS-loop Fast FP Atomics CAS-loop

-munsafe-fp-

atomics
Fast FP atomics Fast FP Atomics CAS-loop

-mno-unsafe-fp-

atomics
CAS-loop Fast FP Atomics CAS-loopC

o
m

p
il
e

r 
O

p
ti

o
n

Hint Clause Value
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Conclusions and Cautionary Statements

OpenMP®

• Some of the OpenMP pragmas and behaviors are specific to AMD. The extensions to OpenMP 

may change as more experience is gained with the more advanced hardware in AMD GPUs.

• Portability of OpenMP pragmas extensions are not guaranteed or even likely even 

among OpenMP compilers for AMD GPUs.

Memory Model in general

• Some of the behavior of managed memory, coarse/fine grain memory, and atomics are still 

under investigation for best implementation in the ROCm™ software and compilers. Compiler 

flags, environment variables, and pragmas might change in future releases.
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Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The 

information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, 

component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, 

firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to 

update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the 

content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF 

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD 

SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO

EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING 

FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS 

PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO 

CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY 

DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2022 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, and combinations thereof are trademarks of Advanced Micro Devices, Inc. in 

the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the United States and/or 

other countries

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
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